domingo, 18 de julio de 2010

PENDULO





El péndulo (del lat. pendŭlus, pendiente) es un sistema físico que puede oscilar bajo la acción gravitatoria u otra característica física (elasticidad, por ejemplo) y que está configurado por una masa suspendida de un punto o de un eje horizontal fijos mediante un hilo, una varilla, u otro dispositivo.

Existen muy variados tipos de péndulos que, atendiendo a su configuración y usos, reciben los nombres apropiados: péndulo simple, péndulo compuesto, péndulo cicloidal, doble péndulo, péndulo de Foucault, péndulo de Newton, péndulo balístico, péndulo de torsión, péndulo esférico, etcétera.

Sus usos son muy variados: Medida del tiempo (reloj de péndulo, metrónomo,...), medida de la intensidad de la gravedad,...


Péndulo simple o matemático
Artículo principal: Péndulo simple

Componentes del peso de la masa pendular.También llamado péndulo ideal, está constituido por un hilo inextensible de masa despreciable, sostenido por su extremo superior de un punto fijo, con una masa puntual sujeta en su extremo inferior que oscila libremente en un plano vertical fijo.

Al separar la masa pendular de su punto de equilibrio, oscila a ambos lados de dicha posición, desplazándose sobre una trayectoria circular con movimiento periódico


Ecuación del movimiento
Para escribir la ecuación del movimiento, observaremos la figura adjunta, correspondiente a una posición genérica del péndulo. La flecha azul representa el peso de la masa pendular. Las flechas en color violeta representan las componentes del peso en las direcciones tangencial y normal a la trayectoria.

Aplicando la Segunda Ley de Newton en la dirección del movimiento, tenemos







donde el signo negativo tiene en cuenta que la Ft tiene dirección opuesta a la del desplazamiento angular positivo (hacia la derecha, en la figura). Considerando la relación existente entre la aceleración tangencial y la aceleración angular


obtenemos finalmente la ecuación diferencial del movimiento plano del péndulo simple


ECUACION DE MOVIMIENTO


En física, una ecuación de movimiento es una ecuación diferencial que caracteriza cómo es la evolución temporal de un sistema físico. Esta ecuación relaciona la derivada temporal de una o varias variables que caracterizan el estado físico del sistema, con otras magnitudes físicas que provocan el cambio en el sistema.

Ecuaciones de movimiento de partículas
El análogo de la primera ley de Newton en teoría de la teoría de la relatividad postula que cuando sobre las partículas no actúa ninguna fuerza estas se mueven a lo largo de las geodésicas del espacio-tiempo, es decir, sobre las líneas más "rectas" posibles o de curvatura mínima. Cuando sobre las partículas actúa alguna fuerza, la ecuación del movimiento en términos de tiempo propio de la partícula, los símbolos de Christoffel dependientes de la curvatura del espacio tiempo, y la fuerza total sobre la partícula viene dada por:


Para una partícula moviéndose a través de un espacio-tiempo plano (), con velocidad pequeña respecto a la de la luz () la anterior ecuación se reduce a la segunda ley de Newton.

FASE Y ANGULO DE FASE



Ángulo de fase es el ángulo entre el Sol y la Tierra visto desde el centro de un planeta. Está relacionado con la fase de un planeta o porción del disco iluminado tal como se ve desde la Tierra. Para un planeta interior como Mercurio y Venus el ángulo de fase adquiere cualquier valor, siendo 0 en la conjunción superior, 180 en la conjunción inferior. Para un planeta exterior el ángulo de fase está limitado por sen Fmax=1/r donde r es la distancia del planeta exterior al Sol en UA. Adquiere este valor máximo en las cuadraturas y vale 0 en la conjunción y en la oposición.


La fase indica la situación instantánea en el ciclo, de una magnitud que varia cíclicamente.

En el caso de una onda sinusoidal que avanza en el sentido de los x crecientes, si es la amplitud, la pulsación (en radianes por segundo), k el número de onda (en 1/m), t el tiempo (en segundos) y x la posición (en metros), podemos escribir:


El ángulo de fase de esta onda es

No se puede determinar el ángulo de fase de una onda basándose en una sola medida de la onda. Midiendo los valores en función del tiempo o de la posición, se puede deducir el ángulo de fase, pero con una indeterminación de un múltiplo entero de .

En realidad, el valor del ángulo de fase no es muy útil. El valor realmente útil es la diferencia de fase o desfase entre dos sitios, dos instantes o dos ondas

MOVIMIENTO ARMONICO SIMPLE


El movimiento armónico simple (se abrevia m.a.s.) es un movimiento periódico que queda descrito en función del tiempo por una función armónica (seno o coseno). Si la descripción de un movimiento requiriese más de una función armónica, en general sería un movimiento armónico, pero no un m.a.s..

En el caso de que la trayectoria sea rectilínea, la partícula que realiza un m.a.s. oscila alejándose y acercándose de un punto, situado en el centro de su trayectoria, de tal manera que su posición en función del tiempo con respecto a ese punto es una sinusoide. En este movimiento, la fuerza que actúa sobre la partícula es proporcional a su desplazamiento respecto a dicho punto y dirigida hacia éste

El movimiento armónico simple es un movimiento periódico de vaivén, en el que un cuerpo oscila a un lado y a otro de su posición de equilibrio, en una dirección determinada, y en intervalos iguales de tiempo.

Por ejemplo, es el caso de un cuerpo colgado de un muelle oscilando arriba y abajo.El objeto oscila alrededor de la posición de equilibrio cuando se le separa de ella y se le deja en libertad. En este caso el cuerpo sube y baja.

Es también, por ejemplo, el movimiento que realiza cada uno de los puntos de la cuerda de una guitarra cuando esta entra en vibración; pero, pongamos atención, no es el movimiento de la cuerda, sino el movimiento individual de cada uno de los puntos que podemos definir en la cuerda. El movimiento de la cuerda, un movimiento ondulatorio, es el resultado del movimiento global y simultáneo de todos los puntos de la cuerda

MOVIMIENTO OSCILATORIO

El movimiento oscilatorio es un movimiento en torno a un punto de equilibrio estable. Los puntos de equilibrio mecánico son, en general, aquellos en los cuales la fuerza neta que actúa sobre la partícula es cero. Si el equilibrio es estable, un desplazamiento de la partícula con respecto a la posición de equilibrio (elongación) da lugar a la aparición de una fuerza restauradora que devolverá la partícula hacia el punto de equilibrio.

En términos de la energía potencial, los puntos de equilibrio estable se corresponden con los mínimos de la misma.

Ejemplo
El movimiento armónico simple constituye un ejemplo de movimiento oscilatorio. Se llama así al movimiento descrito por la ecuación



donde:

x es la elongación
t es el tiempo
A es la amplitud o elongación máxima.
w es la frecuencia angular
0 es la fase inicial

Uno de los movimientos más importantes, de los observados en la naturaleza, es el movimiento oscilatorio o vibratorio. Una partícula oscila cuando se mueve periódicamente respecto a una posición de equilibrio.

De todos los movimientos oscilatorios, el más importante es el movimiento armónico simple (MAS), debido a que además de ser el de más sencilla descripción matemática, es una aproximación muy buena de muchas oscilaciones presentes en la naturaleza


Por definición, decimos que una que partícula realiza un movimiento armónico simple cuando su desplazamiento x respecto de un origen de coordenadas está dado, en función del tiempo, por la relación

x=A sen(wt+a)

La cantidad wt+a se denomina la fase, y por ello a es la fase inicial; es decir, su valor para t=0. Aunque hemos definido el movimiento armónico simple en función de una exprexión senoidal, puede igualmente expresarse en función de una expresión cosenoidal, el único cambio sería una diferencia de fase de p/2. Como la función seno ( o coseno) varía entre -1 y 1, el desplazamiento de la partícula varía entre x=-A y x=A. El desplazamiento máximo se denomina amplitud del movimiento. La función seno se repite cada vez que el ángulo aumenta en 2p. Por consiguiente el desplazamiento se repite despues de un intervalo de tiempo 2p/w luego el movimiento armónico simple es periódico, y su periodo es

T=2p/w

La frecuencia g, que es el número de oscilaciones por inidad de tiempo, es

g=1/T

CENTRO DE MASA Y CENTRO DE GRAVEDAD

El centro de gravedad (c.g.) es el punto de aplicación de la resultante de todas las fuerzas de gravedad que actúan sobre las distintas porciones materiales de un cuerpo, de tal forma que el momento respecto a cualquier punto de esta resultante aplicada en el centro de gravedad es el mismo que el producido por los pesos de todas las masas materiales que constituyen dicho cuerpo.

En otras palabras, el centro de gravedad de un cuerpo es el punto respecto al cual las fuerzas que la gravedad ejerce sobre los diferentes puntos materiales que constituyen el cuerpo producen un momento resultante nulo.

El c.g. de un cuerpo no corresponde necesariamente a un punto material del cuerpo. Así, el c.g. de una esfera hueca está situado en el centro de la esfera que, obviamente, no pertenece al cuerpo.
La resultante de todas las fuerzas gravitatorias que actúan sobre las partículas que constituyen un cuerpo pueden reemplazarse por una fuerza única, , esto es, el propio peso del cuerpo, aplicada en el centro de gravedad del cuerpo. Esto equivale a decir que los efectos de todas las fuerzas gravitatorias individuales (sobre las partículas) pueden contrarrestarse por una sola fuerza, , con tal de que sea aplicada en el centro de gravedad del cuerpo, como se indica en la figura.

Un objeto apoyado sobre una base plana estará en equilibrio estable si la vertical que pasa por el centro de gravedad corta a la base de apoyo. Lo expresamos diciendo que el c.g. se proyecta verticalmente (cae) dentro de la base de apoyo.

Además, si el cuerpo se aleja ligeramente de la posición de equilibrio, aparecerá un momento restaurador y recuperará la posición de equilibrio inicial. No obstante, si se aleja más de la posición de equilibrio, el centro de gravedad puede caerfuera de la base de apoyo y, en estas condiciones, no habrá un momento restaurador y el cuerpo abandona definitivamente la posición de equilibrio inicial mediante una rotación que le llevará a una nueva posición de equilibrio.



El centro de masas de un sistema discreto o contínuo es el punto geométrico que dinámicamente se comporta como si en él estuviera aplicada la resultante de las fuerzas externas al sistema. De manera análoga, se puede decir que el sistema formado por toda la masa concentrada en el centro de masas es un sistema equivalente al original. Normalmente se abrevia como c.m..

Distribución discreta de materia
Para un sistema de masas discreto, formado por un conjunto de masas puntuales, el centro de masas se puede calcular como:

PROPULSION DE COHETES




Los cohetes del motor, tanto si forman parte de un propulsor masivo o de un dispositivo de baja propulsión usado para el ajuste de la estabilidad de la órbita del satélite, operan bajo el principio de que la masa es acelerada y expulsada, creando así una fuerza de reacción de acuerdo con la tercera ley de Newton. El cohete es por lo tanto un recipiente de materia y energía. La materia, que originalmente descansa en el recipiente, se transforma en un gas liberando energía cinética. Este gas escapa a través de la tobera a gran velocidad mientras que el resto de materia no gaseosa del cohete sufre un cambio de momento, resultando una fuerza de reacción.



Empuje del cohete

Una ecuación para la propulsión del cohete puede ser obtenida a partir de un sistema de dos elementos: un cohete de masa m y un gas de masa dm que abandona el cohete a través de la tobera. El momento neto de estos dos elementos combinados puede ser expresado por la siguiente ecuación:



Donde N es el momento neto, v la velocidad del cohete y vees la velocidad relativa del gas que abandona la tobera.

La reducción dinámica en la masa del cohete correspondiente al incremento proporcional del gas puede expresarse como



Asumiendo que la velocidad de escape ve es constante, la aceleración de los gases a través de la tobera es cero; así



El momento neto puede ser derivado con respecto al tiempo y el resultado igualado a cero. Y considerando que dm es muy pequeña y en el límite tiende a cero, y aplicando las dos ecuaciones anteriores, obtenemos:



La primera parte de la ecuación anterior puede ser considerada como una fuerza de reacción F que actúa sobre el cohete, por lo que la ecuación la podemos reescribir como:



El signo negativo refleja el hecho de que la corriente de gas es interpretada como un número positivo y la velocidad de escape y la fuerza de reacción actúan en direcciones opuestas.