domingo, 18 de julio de 2010

PENDULO





El péndulo (del lat. pendŭlus, pendiente) es un sistema físico que puede oscilar bajo la acción gravitatoria u otra característica física (elasticidad, por ejemplo) y que está configurado por una masa suspendida de un punto o de un eje horizontal fijos mediante un hilo, una varilla, u otro dispositivo.

Existen muy variados tipos de péndulos que, atendiendo a su configuración y usos, reciben los nombres apropiados: péndulo simple, péndulo compuesto, péndulo cicloidal, doble péndulo, péndulo de Foucault, péndulo de Newton, péndulo balístico, péndulo de torsión, péndulo esférico, etcétera.

Sus usos son muy variados: Medida del tiempo (reloj de péndulo, metrónomo,...), medida de la intensidad de la gravedad,...


Péndulo simple o matemático
Artículo principal: Péndulo simple

Componentes del peso de la masa pendular.También llamado péndulo ideal, está constituido por un hilo inextensible de masa despreciable, sostenido por su extremo superior de un punto fijo, con una masa puntual sujeta en su extremo inferior que oscila libremente en un plano vertical fijo.

Al separar la masa pendular de su punto de equilibrio, oscila a ambos lados de dicha posición, desplazándose sobre una trayectoria circular con movimiento periódico


Ecuación del movimiento
Para escribir la ecuación del movimiento, observaremos la figura adjunta, correspondiente a una posición genérica del péndulo. La flecha azul representa el peso de la masa pendular. Las flechas en color violeta representan las componentes del peso en las direcciones tangencial y normal a la trayectoria.

Aplicando la Segunda Ley de Newton en la dirección del movimiento, tenemos







donde el signo negativo tiene en cuenta que la Ft tiene dirección opuesta a la del desplazamiento angular positivo (hacia la derecha, en la figura). Considerando la relación existente entre la aceleración tangencial y la aceleración angular


obtenemos finalmente la ecuación diferencial del movimiento plano del péndulo simple


ECUACION DE MOVIMIENTO


En física, una ecuación de movimiento es una ecuación diferencial que caracteriza cómo es la evolución temporal de un sistema físico. Esta ecuación relaciona la derivada temporal de una o varias variables que caracterizan el estado físico del sistema, con otras magnitudes físicas que provocan el cambio en el sistema.

Ecuaciones de movimiento de partículas
El análogo de la primera ley de Newton en teoría de la teoría de la relatividad postula que cuando sobre las partículas no actúa ninguna fuerza estas se mueven a lo largo de las geodésicas del espacio-tiempo, es decir, sobre las líneas más "rectas" posibles o de curvatura mínima. Cuando sobre las partículas actúa alguna fuerza, la ecuación del movimiento en términos de tiempo propio de la partícula, los símbolos de Christoffel dependientes de la curvatura del espacio tiempo, y la fuerza total sobre la partícula viene dada por:


Para una partícula moviéndose a través de un espacio-tiempo plano (), con velocidad pequeña respecto a la de la luz () la anterior ecuación se reduce a la segunda ley de Newton.

FASE Y ANGULO DE FASE



Ángulo de fase es el ángulo entre el Sol y la Tierra visto desde el centro de un planeta. Está relacionado con la fase de un planeta o porción del disco iluminado tal como se ve desde la Tierra. Para un planeta interior como Mercurio y Venus el ángulo de fase adquiere cualquier valor, siendo 0 en la conjunción superior, 180 en la conjunción inferior. Para un planeta exterior el ángulo de fase está limitado por sen Fmax=1/r donde r es la distancia del planeta exterior al Sol en UA. Adquiere este valor máximo en las cuadraturas y vale 0 en la conjunción y en la oposición.


La fase indica la situación instantánea en el ciclo, de una magnitud que varia cíclicamente.

En el caso de una onda sinusoidal que avanza en el sentido de los x crecientes, si es la amplitud, la pulsación (en radianes por segundo), k el número de onda (en 1/m), t el tiempo (en segundos) y x la posición (en metros), podemos escribir:


El ángulo de fase de esta onda es

No se puede determinar el ángulo de fase de una onda basándose en una sola medida de la onda. Midiendo los valores en función del tiempo o de la posición, se puede deducir el ángulo de fase, pero con una indeterminación de un múltiplo entero de .

En realidad, el valor del ángulo de fase no es muy útil. El valor realmente útil es la diferencia de fase o desfase entre dos sitios, dos instantes o dos ondas

MOVIMIENTO ARMONICO SIMPLE


El movimiento armónico simple (se abrevia m.a.s.) es un movimiento periódico que queda descrito en función del tiempo por una función armónica (seno o coseno). Si la descripción de un movimiento requiriese más de una función armónica, en general sería un movimiento armónico, pero no un m.a.s..

En el caso de que la trayectoria sea rectilínea, la partícula que realiza un m.a.s. oscila alejándose y acercándose de un punto, situado en el centro de su trayectoria, de tal manera que su posición en función del tiempo con respecto a ese punto es una sinusoide. En este movimiento, la fuerza que actúa sobre la partícula es proporcional a su desplazamiento respecto a dicho punto y dirigida hacia éste

El movimiento armónico simple es un movimiento periódico de vaivén, en el que un cuerpo oscila a un lado y a otro de su posición de equilibrio, en una dirección determinada, y en intervalos iguales de tiempo.

Por ejemplo, es el caso de un cuerpo colgado de un muelle oscilando arriba y abajo.El objeto oscila alrededor de la posición de equilibrio cuando se le separa de ella y se le deja en libertad. En este caso el cuerpo sube y baja.

Es también, por ejemplo, el movimiento que realiza cada uno de los puntos de la cuerda de una guitarra cuando esta entra en vibración; pero, pongamos atención, no es el movimiento de la cuerda, sino el movimiento individual de cada uno de los puntos que podemos definir en la cuerda. El movimiento de la cuerda, un movimiento ondulatorio, es el resultado del movimiento global y simultáneo de todos los puntos de la cuerda

MOVIMIENTO OSCILATORIO

El movimiento oscilatorio es un movimiento en torno a un punto de equilibrio estable. Los puntos de equilibrio mecánico son, en general, aquellos en los cuales la fuerza neta que actúa sobre la partícula es cero. Si el equilibrio es estable, un desplazamiento de la partícula con respecto a la posición de equilibrio (elongación) da lugar a la aparición de una fuerza restauradora que devolverá la partícula hacia el punto de equilibrio.

En términos de la energía potencial, los puntos de equilibrio estable se corresponden con los mínimos de la misma.

Ejemplo
El movimiento armónico simple constituye un ejemplo de movimiento oscilatorio. Se llama así al movimiento descrito por la ecuación



donde:

x es la elongación
t es el tiempo
A es la amplitud o elongación máxima.
w es la frecuencia angular
0 es la fase inicial

Uno de los movimientos más importantes, de los observados en la naturaleza, es el movimiento oscilatorio o vibratorio. Una partícula oscila cuando se mueve periódicamente respecto a una posición de equilibrio.

De todos los movimientos oscilatorios, el más importante es el movimiento armónico simple (MAS), debido a que además de ser el de más sencilla descripción matemática, es una aproximación muy buena de muchas oscilaciones presentes en la naturaleza


Por definición, decimos que una que partícula realiza un movimiento armónico simple cuando su desplazamiento x respecto de un origen de coordenadas está dado, en función del tiempo, por la relación

x=A sen(wt+a)

La cantidad wt+a se denomina la fase, y por ello a es la fase inicial; es decir, su valor para t=0. Aunque hemos definido el movimiento armónico simple en función de una exprexión senoidal, puede igualmente expresarse en función de una expresión cosenoidal, el único cambio sería una diferencia de fase de p/2. Como la función seno ( o coseno) varía entre -1 y 1, el desplazamiento de la partícula varía entre x=-A y x=A. El desplazamiento máximo se denomina amplitud del movimiento. La función seno se repite cada vez que el ángulo aumenta en 2p. Por consiguiente el desplazamiento se repite despues de un intervalo de tiempo 2p/w luego el movimiento armónico simple es periódico, y su periodo es

T=2p/w

La frecuencia g, que es el número de oscilaciones por inidad de tiempo, es

g=1/T

CENTRO DE MASA Y CENTRO DE GRAVEDAD

El centro de gravedad (c.g.) es el punto de aplicación de la resultante de todas las fuerzas de gravedad que actúan sobre las distintas porciones materiales de un cuerpo, de tal forma que el momento respecto a cualquier punto de esta resultante aplicada en el centro de gravedad es el mismo que el producido por los pesos de todas las masas materiales que constituyen dicho cuerpo.

En otras palabras, el centro de gravedad de un cuerpo es el punto respecto al cual las fuerzas que la gravedad ejerce sobre los diferentes puntos materiales que constituyen el cuerpo producen un momento resultante nulo.

El c.g. de un cuerpo no corresponde necesariamente a un punto material del cuerpo. Así, el c.g. de una esfera hueca está situado en el centro de la esfera que, obviamente, no pertenece al cuerpo.
La resultante de todas las fuerzas gravitatorias que actúan sobre las partículas que constituyen un cuerpo pueden reemplazarse por una fuerza única, , esto es, el propio peso del cuerpo, aplicada en el centro de gravedad del cuerpo. Esto equivale a decir que los efectos de todas las fuerzas gravitatorias individuales (sobre las partículas) pueden contrarrestarse por una sola fuerza, , con tal de que sea aplicada en el centro de gravedad del cuerpo, como se indica en la figura.

Un objeto apoyado sobre una base plana estará en equilibrio estable si la vertical que pasa por el centro de gravedad corta a la base de apoyo. Lo expresamos diciendo que el c.g. se proyecta verticalmente (cae) dentro de la base de apoyo.

Además, si el cuerpo se aleja ligeramente de la posición de equilibrio, aparecerá un momento restaurador y recuperará la posición de equilibrio inicial. No obstante, si se aleja más de la posición de equilibrio, el centro de gravedad puede caerfuera de la base de apoyo y, en estas condiciones, no habrá un momento restaurador y el cuerpo abandona definitivamente la posición de equilibrio inicial mediante una rotación que le llevará a una nueva posición de equilibrio.



El centro de masas de un sistema discreto o contínuo es el punto geométrico que dinámicamente se comporta como si en él estuviera aplicada la resultante de las fuerzas externas al sistema. De manera análoga, se puede decir que el sistema formado por toda la masa concentrada en el centro de masas es un sistema equivalente al original. Normalmente se abrevia como c.m..

Distribución discreta de materia
Para un sistema de masas discreto, formado por un conjunto de masas puntuales, el centro de masas se puede calcular como:

PROPULSION DE COHETES




Los cohetes del motor, tanto si forman parte de un propulsor masivo o de un dispositivo de baja propulsión usado para el ajuste de la estabilidad de la órbita del satélite, operan bajo el principio de que la masa es acelerada y expulsada, creando así una fuerza de reacción de acuerdo con la tercera ley de Newton. El cohete es por lo tanto un recipiente de materia y energía. La materia, que originalmente descansa en el recipiente, se transforma en un gas liberando energía cinética. Este gas escapa a través de la tobera a gran velocidad mientras que el resto de materia no gaseosa del cohete sufre un cambio de momento, resultando una fuerza de reacción.



Empuje del cohete

Una ecuación para la propulsión del cohete puede ser obtenida a partir de un sistema de dos elementos: un cohete de masa m y un gas de masa dm que abandona el cohete a través de la tobera. El momento neto de estos dos elementos combinados puede ser expresado por la siguiente ecuación:



Donde N es el momento neto, v la velocidad del cohete y vees la velocidad relativa del gas que abandona la tobera.

La reducción dinámica en la masa del cohete correspondiente al incremento proporcional del gas puede expresarse como



Asumiendo que la velocidad de escape ve es constante, la aceleración de los gases a través de la tobera es cero; así



El momento neto puede ser derivado con respecto al tiempo y el resultado igualado a cero. Y considerando que dm es muy pequeña y en el límite tiende a cero, y aplicando las dos ecuaciones anteriores, obtenemos:



La primera parte de la ecuación anterior puede ser considerada como una fuerza de reacción F que actúa sobre el cohete, por lo que la ecuación la podemos reescribir como:



El signo negativo refleja el hecho de que la corriente de gas es interpretada como un número positivo y la velocidad de escape y la fuerza de reacción actúan en direcciones opuestas.

COLISIONES EN 2 Y EN 3 DIMENCIONES


Consideremos la colisión elástica no frontal entre dos esferas, en donde una de ellas está inicialmente en reposo, como se ilustra en la figura 1.a. Respecto a la dirección de la esfera incidente, las esferas se moverán en direcciones q1 y q2, como se indica en la figura 1.b. A continuación analizaremos la colisión en relación con las rapideces y las direcciones finales de las esferas, considerando posteriormente el caso en que las esferas tengan la misma masa.

COLISIONES ELASTICAS E INELASTICAS

Un choque inelastico es un tipo de choque en el que la energía cinética no se conserva. Como consecuencia, los cuerpos que colisionan pueden sufrir deformaciones y aumento de su temperatura. En el caso ideal de un choque perfectamente inelástico entre objetos macroscópicos, éstos permanecen unidos entre sí tras la colisión. El marco de referencia del centro de masas permite presentar una definición más precisa.

La principal característica de este tipo de choque es que existe una disipación de energía, ya que tanto el trabajo realizado durante la deformación de los cuerpos como el aumento de su energía interna se obtiene a costa de la energía cinética de los mismos antes del choque. En cualquier caso, aunque no se conserve la energía cinética, sí que se conserva el momento lineal total del sistema






En física, se denomina choque elástico a una colisión entre dos o más cuerpos en la que éstos no sufren deformaciones permanentes durante el impacto. En una colisión elástica se conservan tanto el momento lineal como la energía cinética del sistema, y no hay intercambio de masa entre los cuerpos, que se separan después del choque.

Las colisiones en las que le energía no se conserva producen deformaciones permanentes de los cuerpos y se denominan inelásticas.

Choque perfectamente elástico

Dos masas iguales chocan elásticamente.
Choque elástico entre dos cuerpos de distinta masa moviéndose con igual rapidez en sentidos opuestos.
Choque elástico entre dos monedas.En mecánica se hace referencia a un choque perfectamente elástico cuando en él se conserva la energía cinética del sistema formado por las dos masas que chocan entre sí.

Para el caso particular que ambas masas sean iguales, se desplacen según la misma recta y que la masa chocada se encuentre inicialmente en reposo, la energía se transferirá por completo desde la primera a la segunda, que pasa del estado de reposo al estado que tenía la masa que la chocó.

En otros casos se dan situaciones intermedias en lo referido a las velocidades de ambas masas, aunque siempre se conserva la energía cinética del sistema. Esto es consecuencia de que el término "elástico" hace referencia a que no se consume energía en deformaciones plásticas, calor u otras formas.

IMPULSO

En mecanica, se denomina impulso a la magnitud física, generalmente representada como (I), definida como la variación en la cantidad de movimiento que experimenta un objeto en un sistema cerrado. El término difiere de lo que cotidianamente conocemos como impulso y fue acuñado por Isaac Newton en su segunda ley, donde la llamó vi motrici refiriéndose a una especie de fuerza del movimiento.

En la mecánica clásica, a partir de la segunda ley de Newton sobre la fuerza tenemos que


si multiplicamos ambos miembros por dt:


lo que nos dice que la variación de la cantidad de movimiento es proporcional a una fuerza aplicada sobre la partícula durante un intervalo de tiempo:



A lo que llamamos impulso es ese valor de la integral de la fuerza en el tiempo:


Unidades
Un impulso cambia el momento lineal de un objeto, y tiene las mismas unidades y dimensiones que el momento lineal. Las unidades del impulso en el Sistema Internacional son kg·m/s.

Para deducir las unidades podemos utilizar la definición más simple, donde tenemos:



considerando que , y sustituyendo, resulta




y efectivamente,

MOMENTO LINEAL

La cantidad de movimiento, momento lineal, ímpetu o moméntum es una magnitud vectorial, unidad SI: (kg m/s) que, en mecánica clásica, se define como el producto de la masa del cuerpo y su velocidad en un instante determinado. En cuanto al nombre, Galileo Galilei en su Discursos sobre dos nuevas ciencias usa el término italiano impeto, mientras que Isaac Newton usa en Principia Mathematica el término latino motus[1] (movimiento) y vis (fuerza). Moméntum es una palabra directamente tomada del latín mōmentum, derivado del verbo mŏvĕre 'mover'

En Mecánica Clásica la forma más usual de introducir la cantidad de movimiento es mediante definición como el producto de la masa (kg) de un cuerpo material por su velocidad (m/s), para luego analizar su relación con la ley de Newton a través del teorema del impulso y la variación de la cantidad de movimiento. No obstante, después del desarrollo de la Física Moderna, esta manera de hacerlo no resultó la más conveniente para abordar esta magnitud fundamental.

El defecto principal es que esta forma esconde el concepto inherente a la magnitud, que resulta ser una propiedad de cualquier ente físico con o sin masa, necesaria para describir las interacciones. Los modelos actuales consideran que no sólo los cuerpos masivos poseen cantidad de movimiento, también resulta ser un atributo de los campos y los fotones.

La cantidad de movimiento obedece a una ley de conservación, lo cual significa que la cantidad de movimiento total de todo sistema cerrado (o sea uno que no es afectado por fuerzas exteriores, y cuyas fuerzas internas no son disipadoras) no puede ser cambiada y permanece constante en el tiempo.

En el enfoque geométrico de la mecánica relativista la definición es algo diferente. Además, el concepto de momento lineal puede definirse para entidades físicas como los fotones o los campos electromagnéticos, que carecen de masa en reposo. No se debe confundir el concepto de momento lineal con otro concepto básico de la mecánica newtoniana, denominado momento angular, que es una magnitud diferente.

Finalmente, se define el impulso recibido por una partícula o un cuerpo como la variación de la cantidad de movimiento durante un período dado:


siendo pf la cantidad de movimiento al final del intervalo y p0 al inicio del intervalo.

LEY DE LA CONSERVACION DE LA ENERGIA


Esta ley es una de las leyes fundamentales de la física y su teoría se trata de que la energía no se crea ni se destruye, únicamente se transforma (ello implica que la masa en ciertas condiciones se puede considerar como una forma de energía .En general , no se tratará aquí el problema de conservación de masa en energía ya que se incluye la teoría de la relatividad ).

La ley de conservación de la energía afirma que:

1.-No existe ni puede existir nada capaz de generar energía .

2.-No existe ni puede existir nada capaz de hacer desaparecer la energía.

3.-Si se observa que la cantidad de energía varía siempre será posible atribuir dicha variación a un intercambio de energía con algún otro cuerpo o con el medio circundante.

Ejemplo: Un bus interprovincial está detenido en un terminal . Al llegar la hora de salida, el conductor hace funcionar el bus y este se pone en marcha .Esto implica que la energía cinética del bus aumenta .El aumento de energía proviene de la energía química liberada en la combustión de gasolina en el motor del bus .

No toda la energía química liberada en el motor se transforma en energía cinética. Parte es transferida en forma de calor a los diferentes componentes del motor y al aire circundante. Esta energía “se pierde” en el sentido de que no se aprovecha para el movimiento del vehículo.

Ahora el bus corre con velocidad constante. Su energía cinética, por lo tanto, permanece también constante, pero el motor está funcionando y consume combustible.

La energía liberada en la combustión es transferida al aire en forma de calor: si pudiésemos efectuar una medición muy precisa, detectaríamos un leve aumento de la temperatura del aire como resultado del paso del bus.

TRABAJO DE FRICCION Wf


Se define a la fricción como una fuerza resistente que actúa sobre un cuerpo, que impide o retarda el deslizamiento de este respecto a otro o en la superficie que este en contacto. Esta fuerza es siempre tangencial a la superficie en los puntos de contacto con el cuerpo, y tiene un sentido tal que se opone al movimiento posible o existente del cuerpo respecto a esos puntos. Por otra parte estas fuerzas de fricción están limitadas en magnitud y no impedirán el movimiento si se aplican fuerzas lo suficientemente grandes.

la fuerza de rozamiento entre dos cuerpos no depende del tamaño de la superficie de contacto entre los dos cuerpos, pero sí depende de cual sea la naturaleza de esa superficie de contacto, es decir, de que materiales la formen y si es más o menos rugosa.
la magnitud de la fuerza de rozamiento entre dos cuerpos en contacto es proporcional a la normal entre los dos cuerpos, es decir:
Fr = m·N


.-¿Qué efectos positivos y negativos tiene la fricción?

Positivos: Es un hecho que no sería posible caminar sino fuera por la presencia de la fricción. Todos hemos experimentado lo difícil que resulta caminar sobre una superficie pulida. En este caso, de poca fricción, la persona resbala sin poder avanzar efectivamente.

Negativo: Su presencia causa desgaste considerable en maquinarias y equipos. Los aceites lubricantes utilizados en un automóvil, por ejemplo, disminuyen el rozamiento entre las partes móviles de los mismos, reduciendo así el consumo de energía.

ENERGIA POTENCIAL DE UN RESORTE Y GRAVITACION



Ley de Gravitación Universal

"La fuerza de atracción entre dos cuerpos es directamente proporcional al producto de sus masas, e inversamente proporcional al cuadrado de la distancia que los separa".



Campo Gravitatorio

Es el espacio dentro el cual un cuerpo es capaz de atraer a otro. La Tierra tiene su campo gravitatorio terrestre que es el espacio dentro el cual se manifiesta la gravedad.

La Luna, como todos los demás cuerpos, tiene su propio campo gravitatorio, una prueba de la existencia de este campo es la atracción que ejerce la Luna sobre los mares, originando las mareas.

El valor del campo gravitatorio es numéricamente igual a la aceleración de la gravedad y puede representarse como un vector dirigido hacia el objeto que produce el campo.

g = F/m

Gravedad

Es la fuerza de atracción (G) que ejerce la Tierra sobre los cuerpos que se encuentran dentro de su campo gravitatorio en virtud de la cual éstos caen hacia el centro de la Tierra. Este término "gravedad" se suele confundir con el concepto de aceleración de la gravedad (g), la aceleración de la gravedad es la variación de la velocidad de caída de un cuerpo hacía la Tierra y es consecuencia de la fuerza de atracción terrestre (gravedad).

Energía Potencial DE UN RESORTE: Si se considera un resorte que cuelga del techo y uno de sus extremos está fijo, adosado al techo, mientras su otro extremo está libre, al ejercer una fuerza sobre el resorte éste se puede comprimir, disminuyendo su longitud. Para que el resorte no se estire será necesario mantener una fuerza sobre él. Al acabarse la fuerza, el resorte se descomprime, estirándose.

Si ahora se tiene el resorte con un extremo fijo sobre la mesa, y se ejerce una fuerza para comprimirlo, si el extremo libre de este resorte se pone en contacto con algún cuerpo, al descomprimirse puede provocar que el objeto se mueva, comunicándole energía cinética (energía que poseen los cuerpos cuando se mueven).

Este hecho pone de manifiesto que el resorte comprimido posee energía almacenada que se denomina energía potencial elástica.

FUERZAS CONCERVATIVAS

Una Fuerza Conservativa

Es la fuerza que genera un Campo Conservativo.

Se caracterizan por realizar un trabajo que sólo depende de las posiciones inicial y final, y no de la trayectoria del recorrido.

Técnicamente, se habla de que las fuerzas conservativas son provenientes de un gradiente de campo potencial, o equivalentemente, que son fuerzas provenientes de campos irrotacionales (Ver concepto de Campo rotacional).

Son conservativas, por ejemplo, las fuerzas:

Fuerza Gravitacional

Fuerza Elástica

Fuerza Electrostática


Puede demostrarse que un campo es conservativo si presenta alguna de las propiedades siguientes (de hecho si cumple una de ellas, cumplirá las otras ya que matemáticamente son equivalentes):

Hay un campo escalar V(r) con:

donde es el gradiente del campo escalar V(r).
El trabajo

a lo largo de un camino cualquiera S a través del campo de fuerza depende sólo de los puntos inicial y final y no de la trayectoria. En particular, el trabajo por una curva cerrada C es cero, también

El campo es simplemente continuo y cumple la condición de integrabilidad:
. Eso significa que, si la rotación desaparece, también lo hará

ENERGIA CINETICA

La energía cinética de un cuerpo es una energía que surge en el fenómeno del movimiento. Está definida como el trabajo necesario para acelerar un cuerpo de una masa dada desde el reposo hasta la velocidad que posee. Una vez conseguida esta energía durante la aceleración, el cuerpo mantiene su energía cinética salvo que cambie su rapidez. Para que el cuerpo regrese a su estado de reposo se requiere un trabajo negativo de la misma magnitud que su energía cinética.

Energía cinética de una partícula
En mecánica clásica, la energía cinética de un objeto puntual (un cuerpo tan pequeño que su dimensión puede ser ignorada), o en un sólido rígido que no rote, está dada en la ecuación




m es la masa y v es la rapidez (o velocidad) del cuerpo.

En mecánica clásica la energía cinética se puede calcular a partir de la ecuación del trabajo y la expresión de una fuerza F dada por la segunda ley de Newton:



La energía cinética se incrementa con el cuadrado de la rapidez. Así la energía cinética es una medida dependiente del sistema de referencia. La energía cinética de un objeto está también relacionada con su momento lineal:

TRABAJO ECHO POR FUERZAS VASRIABLES

En el caso de una fuerza variable el trabajo se puede calcular gráficamente, el procedimiento es parecido al calculo del desplazamiento cuando conocemos la velocidad en función del tiempo T. Para calcular el trabajo efectuado por una fuerza variable graficamos Fcos , que es la componente de la fuerza paralelo al desplazamiento horizontal de la partícula en cualquier punto, en función de una distancia D, dividimos la distancia en pequeños segmentos D. Para cada segmento se indica el promedio de Fcos mediante una línea horizontal de puntos. Entonces el trabajo seria: T = ( Fcos ) * ( D ), que seria el área del rectángulo de ancho D y altura Fcos , el trabajo total sería la suma de todos los T. Las unidades básicas de trabajo son el Joule y el Ergio


.

TRABAJO ECHO POR FUERZAS D FRENAMIENTO

Un automovil cuyo peso es de 17640 newton, desciende por una pendiente que forma un angulo de 25º respecto a la horizontal a una velocidad de 10m/s. En ese instante el conductor pisa el freno y detiene el automovil a una distancia de 20m.

¿Que fuerza media realizaron los frenos para detenerlo?

Aplicamos el principio de conservación de la energía a los instantes inicial (1) y final (2). La diferencia de energía mecánica entre el estado final y el inicial debe ser igual al trabajo realizado por las fuerzas externas.

En el instante inicial su energía potencial es:

Ep1 = m g h

Como la altura es igual a la distancia sobre el plano inclinado por el seno del ángulo:

h = d sen 35º

Ep1 = m g d sen 35º

y su energía cinética es:

Ec1 = ½ m v²

E1 = Ep1 + Ec1= m g h + ½ m v²

En el instante final su energía cinética es cero puesto que ya está detenido y su energía potencial es cero porque su altura es cero (es donde tomamos el origen de alturas).

E2 = 0

El trabajo realizado por los frenos será pues igual a:

Wf = E2 – E1 = 0 – (m g d sen 35º + ½ m v²)

Pero el trabajo realizado por los frenos será igual a la fuerza media aplicada por la distancia, Wf = F d, luego:

F d = –(P/g g d sen 35º + ½ P/g v²) = – (P d sen 35º + ½ P/g v²)

Despejando la fuerza:

F = –(17640 N 20m sen 35º + ½ 17640 N /9,8 m/s² (10 m/s)²) / 20 m

► F = –14617,88 N

Nota.- La fuerza de frenado tiene signo negativo porque su dirección es contraria al sentido del movimiento.

TRABAJO Y ENERGIA


Trabajo Es cuando al aplicar una fuerza a un objeto este se mueve. El trabajo se puede definir de manera explicita y cuantitativa cuando:

1.- exista una fuerza aplicada

2.- dicha fuerza debe actuar a través de cierta distancia llamada desplazamiento

3.- la fuerza debe actuar a través de cierta distancia llamada desplazamiento.

4.- la fuerza debe tener una componente a lo largo del desplazamiento y por lo tanto se puede expresar de la siguiente manera: “el trabajo es una cantidad escalar igual al producto de las magnitudes del desplazamiento y de la componente de la fuerza en la dirección del desplazamiento, por lo que la expresión matemática del trabajo queda expresada:

Trabajo= componente de fuerza * desplazamiento

T=Fx*d

Trabajo Resultante

Es cuando varias fuerzas actúan sobre un cuerpo en movimiento y por lo tanto el trabajo resultante, neto o total es la suma algebraica de los

trabajos realizados por cada fuerza individual.

ENERGIA

La energía es algo que se puede convertir en trabajo. En mecánica existen 2 tipos: energía cinética (Ek o Ec) y energía potencial (EP).

La energía cinética se puede definir a groso modo como la cantidad de energía que adquiere un cuerpo en virtud de su movimiento. Algunos ejemplos pueden ser: un automóvil en marcha, una bala en movimiento, un volante que gira, etc.

La energía potencial es la que tiene un sistema en virtud de su posición o condición. Algunos ejemplos son: un objeto que ha sido levantado, un resorte comprimido, una liga estirada, etc.

Energía Cinética

Es la capacidad de realizar y obtener un trabajo como resultado del movimiento de un cuerpo. Considérese un bloque con una velocidad inicial Vi y que la fuerza f actúa a través de la distancias d, haciendo que la velocidad aumente hasta un valor Vf. Si el cuerpo tiene una masa m, la segunda ley de Newton nos dice que ganará velocidad o aceleración en una propiedad dada por:

Aceleración= fuerza/masa

Hasta que alcance la velocidad final:

2ad= Vf2-Vi2 (doble producto de la aceleración por la distancia = velocidad final al cuadrado menos la velocidad inicial al cuadrado)

Esta ecuación tiene 2 términos, el del lado izquierdo representa el trabajo realizado sobre la masa y el lado derecho es el cambio registrado en la energía cinética como resultado de este trabajo. Por lo tanto, se puede definir a la energía cinética como:

Ek= 1/2mV2 (energía cinética= ½ de la velocidad al cuadrado.

Energía Potencial

La energía potencial es la energía que posee un sistema en virtud de su posición o condiciones, para que exista energía potencial es necesario que el cuerpo se eleve con una determinada altura, entonces, el trabajo realizado por el sistema es igual a:

T=wh (trabajo es igual a peso *altura)

T= mgh (trabajo es igual a masa*gravedad*altura)

Esta cantidad de trabajo también será realizada por el cuerpo después que a caído una distancia h, por lo que tiene una energía potencial igual en magnitud al trabajo externo realizado para levantarlo; por lo tanto, la energía potencial queda expresada de la siguiente manera:

EP= wh= mgh

Donde w y m son el peso y la masa de un objeto situado a una distancia h sobre un punto de referencia. Debido a esto, es de suma importancia notar que la capacidad para realizar un trabajo (EP) depende de la altura en base a los puntos de referencia que se determinen.

MOVIMIENTO EN UN PLANO INCLINADO

Un movimiento de rodadura pura de una esfera sobre un plano inclinado se caracteriza porque la fuerza de rozamiento sirve exclusivamente para producir un momento y no actúa como fuerza disipativa. En tal caso, entre la esfera y el plano solo hay un punto de contacto y la aceleración del centro de masas de la esfera y la angular de rotación cumplen la ecuación: a = a · R donde a, es la aceleración del centro de masas de la esfera, a es la aceleración angular y R el radio de la esfera.

En la práctica ocurre que la fuerza de rozamiento produce un trabajo disipativo porque hay más de un punto de contacto entre los dos cuerpos y en consecuencia la rodadura pura es solamente un modelo. Cuando la esfera y el plano son de materiales muy poco deformables, el movimiento real se aproxima tanto más al modelo de rodadura pura, sin embargo, se requiere que el ángulo b del plano inclinado sea pequeño, para que no se produzca deslizamiento.

El modelo de rodadura pura por un plano inclinado da lugar a las siguientes ecuaciones de las que se determina la aceleración del centro de masas.




En la figura están representadas las fuerzas que actúan sobre la esfera

Traslación: P sen b – FR = m · a

Rotación: FR · R = I a

Rodadura: a = a · R


Teniendo en cuenta que el momento de inercia de la esfera respecto de un eje que pase por su centro de masas es


y combinándola con las ecuaciones anteriores se obtiene para la aceleración del centro de masas:



En este experimento el plano forma un ángulo de 10º con la horizontal y se trata de medir experimentalmente la aceleración del centro de masas y compararla con el valor que predice el modelo de rodadura pura.

FUERZAS DE FRICCION

Se define a la fricción como una fuerza resistente que actúa sobre un cuerpo, que impide o retarda el deslizamiento de este respecto a otro o en la superficie que este en contacto. Esta fuerza es siempre tangencial a la superficie en los puntos de contacto con el cuerpo, y tiene un sentido tal que se opone al movimiento posible o existente del cuerpo respecto a esos puntos. Por otra parte estas fuerzas de fricción están limitadas en magnitud y no impedirán el movimiento si se aplican fuerzas lo suficientemente grandes.



Esta fuerza es la causante, por ejemplo, de que podamos andar (cuesta mucho más andar sobre una superficie con poco rozamiento, hielo, por ejemplo, que por una superficie con rozamiento como, por ejemplo, un suelo rugoso).

La experiencia nos muestra que:

•la fuerza de rozamiento entre dos cuerpos no depende del tamaño de la superficie de contacto entre los dos cuerpos, pero sí depende de cual sea la naturaleza de esa superficie de contacto, es decir, de que materiales la formen y si es más o menos rugosa.
•la magnitud de la fuerza de rozamiento entre dos cuerpos en contacto es proporcional a la normal entre los dos cuerpos, es decir:
Fr = m·N

Donde m es lo que conocemos como coeficiente de rozamiento.

Existe rozamiento incluso cuando no hay movimiento relativo entre los dos cuerpos que están en contacto. Hablamos entonces de Fuerza de rozamiento estática. Por ejemplo, si queremos empujar un armario muy grande y hacemos una fuerza pequeña, el armario no se moverá. Esto es debido a la fuerza de rozamiento estática que se opone al movimiento. Si aumentamos la fuerza con laque empujamos, llegará un momento en que superemos está fuerza de rozamiento y será entonces cuando el armario se pueda mover. Una vez que el cuerpo empieza a moverse, hablamos de fuerza de rozamiento dinámica. Esta fuerza de rozamiento dinámica es menor que la fuerza de rozamiento estática., podemos así establecer que hay dos coeficientes de rozamiento: el estático, me, y el cinético, mc, siendo el primero mayor que el segundo:

MASA Y PESO

La masa de un cuerpo es una propiedad característica del mismo, que está relacionada con el número y clase de las partículas que lo forman. Se mide en kilogramos (kg) y también en gramos, toneladas, libras, onzas, etc.

El peso de un cuerpo es la fuerza con que lo atrae la Tierra y depende de la masa del mismo. Un cuerpo de masa el doble que otro, pesa también el doble. Se mide en Newtons (N) y también en kg-fuerza, dinas, libras-fuerza, onzas-fuerza, etc.
P = M X G


Donde
P = peso, en Newtons (N)
m = masa, en kilogramos (kg)
g = constante gravitacional, que es 9,8 en la Tierra (kg.m/s).

SEGUNDA LEY DE NEWTON



Segunda ley de Newton o Ley de fuerza
La segunda ley del movimiento de Newton dice que

el cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.[6]
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, esto es, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.

En términos matemáticos esta ley se expresa mediante la relación:


Donde P es la cantidad de movimiento y F la fuerza total. Bajo la hipótesis de constancia de la masa y pequeñas velocidades, puede reescribirse más sencillamente como:


que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad distinta para cada cuerpo es su masa de inercia, pues las fuerzas ejercidas sobre un cuerpo sirven para vencer su inercia, con lo que masa e inercia se identifican. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.

Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.

De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.

La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).

Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con un resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad.